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Abstract
In recent years, a growing interest in anharmonic effects in materials arose due to the ex-

pected impact of anharmonic electron-phonon interactions on phonon-mediated super-

conductivity in hydrides and on polaron mobility in quantum paraelectrics [1] and halide

perovskites [2]. This has led to the development of model Hamiltonians [1], [3] which take

into account the anharmonicity of the lattice and go beyond the usual linear electron-

phonon coupling.

In this work, we consider a modified Holstein Hamiltonian with a quadratic electron-

phonon interaction term [4]. The Hamiltonian is solved numerically by Diagrammatic

Monte Carlo, calculating zero temperature GS properties such as polaron energy, aver-

age phonon number and effective mass. We benchmark our results with the atomic limit

where analytic solutions are available. We conclude by discussing the extension to finite

temperature effects and future directions.

Polaron model
We take the Holstein Hamiltonian (tight binding electron dispersion, one optical phonon

branch) and replace the usual linear electron-phonon interaction with a term quadratic

in the lattice displacement.
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Ĥph =
∑

q

ω(q)b†
qbq ω(q) = Ω0
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If Ĥel is omitted (t = 0), we speak of the atomic limit, where an analytic solution is well

known, providing an extremely useful benchmark for our data. A canonical transforma-

tion is applied to transform the position-space Hamiltonian into an effective harmonic

oscillator with renormalized frequency Ωat and shifted ground state energy [4].
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Methodology
The Hamiltonian is solved exactly by Diagrammatic Monte Carlo (DiagMC), a random

sampling of Feynman diagrams which constitute the one-electron imaginary time Green

function. Due to the extended interaction, a broader set of diagrams and topologies is

possibile:
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All the ground state properties can be extracted from the large imaginary time behaviour

of the Green function.

The sign of the diagram is given by (−sgn(g2))n, wheren is the diagramorder. It is always

positive if g2 < 0, but for g2 > 0, it is negative whenever n is odd. This sign problem

is mainly caused by single phonon loops. The series of the single phonon loop diagrams

can be summed analytically and included in a renormalized electron propagator.

:= + + + · · · = e−(ε(k)+g2)τ

The same technique can also be applied to study finite temperature effects by employ-

ing the temperature phonon propagator. The total diagram length then acquires the

interpretation of inverse temperature. In this case we measure the current-current cor-

relation function inMatsubara frequency and obtain the mobility through numerical an-

alytic continuation. The form of the current operator used is ĵ = 2eat
∑

k sin(ka)ckck ,

derived from the Peierls substitution for lattice models.
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Ground state properties
At zero T andΩ0 = 1.6, we probed the ground state by measuring the polaron binding

energy, quasiparticle weight, average phonon number and effective mass for different

hoppings and dimensions, benchmarking them with the known atomic limit results.

At positive coupling, the renormalization is very weak and close to the atomic limit.

At negative coupling, the atomic limit divergence at Ω0/4 is retained also at small finite

hopping. At each coupling, increasing the hopping decreases the renormalization, lead-

ing to a steeper divergency. The 3D, t = 0.033 points overlap with the 1D, t = 0.1 data

due to having the same electron bandwidth. Compared to the linear interaction case,

convergence is harder to achieve for the same number of phonons in the cloud.

Temperature and coupling effects on mobility
We studied the behavior of staticmobility against temperature and coupling in the nega-

tive g2 regime. Weplot both axes in log scale to identify typical power-lawdependencies.

The mobility was obtained from the Matsubara frequency current-current correlation

function via Stochastic Optimization with Consistent Constraints, which is free from any

artificial bias [5]. At low coupling a dependence µ ∝ T −δ is found, with an exponent

δ = 1.9 close to the δ = 2 value of the linear interaction case. Compared to the linear

coupling [6], no regime where the derivative changes sign was observed.

Outlook and future work
The goal of the present study was to isolate the novel quadratic electron-phonon inter-

action and investigate its effects on the ground state and temperature dependent prop-

erties with DiagMC. This work represents the first step towards the solution of more

complicated Hamiltonians that feature the quadratic interaction, such as the model pro-

posed in [1] for STO, where electrons are coupled to a soft transverse optical mode via

the two-phonon mechanism. The same form also appears in the extended anharmonic

Fröhlich Hamiltonian derived in [3], which enables the connection to first-principle in-

puts.


