Quadratic electron-phonon coupling by Diagrammatic Monte Carlo

Stefano Ragni1, Thomas Hahn1, Cesare Franchini1,2, Naoto Nagaosa3,4, Andrey Mishchenko4

1University of Vienna, Austria, 2University of Bologna, Italy, 3University of Tokyo, Japan, 4RIKEN CEMS, Japan

Contact: stefano.ragni@univie.ac.at

Abstract

In recent years, a growing interest in anharmonic effects in materials arose due to the expected impact of anharmonic electron-phonon interactions on phonon-mediated superconductivity in hydrides and on polaron mobility in quantum paraelectrics \cite{[1]} and halide perovskites \cite{[2]}. This has led to the development of model Hamiltonians \cite{[1],[3]} which take into account the anharmonicity of the lattice and go beyond the usual linear electron-phonon coupling.

In this work, we consider a modified Holstein Hamiltonian with a quadratic electron-phonon interaction term \cite{[4]}. The Hamiltonian is solved numerically by Diagrammatic Monte Carlo, calculating zero temperature GS properties such as polaron energy, average phonon number and effective mass. We benchmark our results with the atomic limit where analytic solutions are available. We conclude by discussing the extension to finite temperature effects and future directions.

Polaron model

We take the Holstein Hamiltonian (tight binding electron dispersion, one optical phonon branch) and replace the usual linear electron-phonon interaction with a term quadratic in the lattice displacement.

\[\hat{H}_{\text{el-ph}} = \sum_{\bf{k}, \omega_n} \epsilon(\bf{k}) a_{\bf{k}}^\dagger a_{\bf{k}} + \sum_{\bf{k}, \omega_n} \delta(\bf{k}) a_{\bf{k}}^\dagger a_{\bf{k}} \]

The sign of the diagram is given by \(-\text{sgn}(g_2)\)^\text{\(n\)}, where \(n\) is the diagram order. It is always positive if \(g_2 < 0\), but for \(g_2 > 0\), it is negative whenever \(n\) is odd. This sign problem is mainly caused by single phonon loops. The series of the single phonon loop diagrams can be summed analytically and included in a renormalized electron propagator.

\[\text{propagator} = e^{-\delta(\bf{k}) g_2} \]

The same technique can also be applied to study finite temperature effects by employing the temperature phonon propagator. The total diagram length then acquires the interpretation of inverse temperature. In this case we measure the current-current correlation function in Matsubara frequency and obtain the mobility through numerical analytic continuation. The form of the current operator used is \(j = 2e\alpha t \sum_{\bf{k}} \sin(\bf{k}) c^\dagger_{\bf{k}+\bf{q}} c_{\bf{k}} + \ldots\).

\[\text{ground state properties} \]

At zero \(T\) and \(\Omega_0 = 1.6\), we probed the ground state by measuring the polaron binding energy, quasiparticle weight, average phonon number and effective mass for different hoppings and dimensions, benchmarking them with the known atomic limit results.

\[\text{temperature and coupling effects on mobility} \]

We studied the behavior of static mobility against temperature and coupling in the negative \(g_2\) regime. We plot both axes in log scale to identify typical power-law dependencies.

\[\text{outlook and future work} \]

The goal of the present study was to isolate the novel quadratic electron-phonon interaction and investigate its effects on the ground state and temperature dependent properties with DiagMC. This work represents the first step towards the solution of more complicated Hamiltonians that feature the quadratic interaction, such as the model proposed in \cite{[1]} for STO, where electrons are coupled to a soft transverse optical mode through the two-phonon mechanism. The same form also appears in the extended anharmonic Fröhlich Hamiltonian derived in \cite{[3]}, which enables the connection to first-principle inputs.

References

\[[4] \text{C. P. J. Adolphs and M. Berciu, EPL (Europhysics Letters), vol. 102, no. 4, May 2013.} \]