Zero-point Renormalization of the Band Gap of Semiconductors and Insulators Using the PAW Method

Manuel Engel¹, Henrique Miranda², Laurent Chaput³, Atsushi Togo⁴, Carla Verdi⁵, Martijn Marsman⁵, Georg Kresse¹
¹ University of Vienna, Austria ² VASP Software GmbH, Austria ³ LEMTA - Université de Lorraine, France ⁴ National Institute for Materials Science, Japan

Projector-Augmented-Wave (PAW) Method

Imagine that we solve the Kohn-Sham (KS) equations (at least we try). The resulting all-electron (AE) orbitals are represented using plane waves.

Problem

The AE orbitals are orthogonal to each other. Therefore, they exhibit rapid oscillations in proximity to the nuclei. An accurate description of this phenomenon requires numerous plane-wave coefficients. This incurs a high computational cost.

Solution

We transform the AE orbitals into computationally convenient pseudo (PS) orbitals. The PS orbitals are smoother and require fewer plane-wave coefficients, at the cost of losing their orthogonality.

PAW Transformation → PS KS Equations → PAW Operators

AE information is retained inside augmentation spheres around each nucleus using a radial basis set, the so-called partial waves, \(\{ \psi_n^{(l)} \} \) and \(\{ \Phi_n \} \).

Finally, the wavefunction characters, \(\alpha \) and \(\beta \), are calculated by projecting the PS orbitals onto PAW projectors, \(\{ \alpha \} \) and \(\{ \beta \} \).

Zero-Point Renormalization (ZPR)

When electrons couple with the vibrations of the crystal lattice (phonons), the Kohn-Sham eigenvalues become renormalized. At zero Kohn, this is called zero-point renormalization. This is particularly important for the band gap. We use perturbation theory at lowest order to calculate the ZPR. In this case, two diagrams contribute:

- Fan-Migdal (FM)
- Debye-Waller (DW)

We use a Fourier-interpolation technique that combines the accurate Bloch states from the unit cell with the electron-phonon potential from a supercell. This way, we can systematically increase the number of states as well as the q-point density.

The DW term can be calculated similarly after employing the so-called rigid-ion approximation.

Electron-Phonon Matrix Element

The electron-phonon matrix element measures the coupling strength between electrons and phonons. It can be regarded as the probability amplitude associated with this fundamental scattering process:

\[
\delta = \sum_{\vec{q}} \left| \langle \beta | \hat{V}_{\text{el-ph}} | \alpha \rangle \right|^2
\]

Recipe for calculating electron-phonon matrix elements:

- Calculate force constants and derivative of potential in supercell using PW transform.
- Fourier interpolate dynamical matrix to unit cell to obtain phonon modes and frequencies.
- Fourier interpolate electron-phonon potential to unit cell.
- Sandwich electronic bandstructure, as well as other quantities.

Results (¹)

AE and PS methods yield the same non-adiabatic band-gap ZPR for MgO, AlAs, and ZnS. The AE approach requires significantly more intermediate states to converge.

Conclusion

We have implemented a state-of-the-art algorithm in VASP for calculating the electron self-energy using finite differences and the PAW method. This provides access to the phonon-induced renormalization of the electronic bandstructure, as well as other quantities.

Future Developments

- Add more electron-phonon features
 - Transport
 - Phonon self-energy
 - Spin-orbit coupling
- Dynamic quadrupoles in the long-range part
- Compare AE and PS approaches for other observables
- Extend PS formalism beyond electron-phonon renormalization