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Electron-Phonon Matrix Element

— Projector-Augmented-Wave (PAW) Method

Imagine that we solve the Kohn-Sham (KS) equations (at least we try). The
resulting all-electron (AE) orbitals are represented using plane waves.

[ero-Point Renormalization (ZPR)

The electron-phonon matrix element measures the coupling strength be-
tween electrons and phonons. It can be regarded as the probability ampli-
tude associated with this fundamental scattering process:

When electrons couple with the vibrations of the crystal lattice (phonons),
the Kohn-Sham eigenvalues become renormalized. At zero Kelvin, this is
called zero-point renormalization. This is particularly important for the
band gap. We use perturbation theory at lowest order to calculate the ZPR.
In this case, two diagrams contribute:
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- Calculate force constants and derivative of potential in supercell using
finite displacements

- Fourier interpolate dynamical matrix to unit cell to obtain phonon
modes and frequencies

- Fourier interpolate electron-phonon potential to unit cell

Fan-Migdal (FM) Debye-Waller (DW)
. We transform the AE orbitals into computationally convenient pseudo
| (PS) orbitals . The PS orbitals are smoother and require fewer

' plane-wave coefficients, at the price of no longer being orthogonal.
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'\ diate states and phonon momenta.

| Polar materials exhibit long-range electrostatic interactions for longitudi-
' nal optical phonon modes. Fourier interpolation will fail in this case due

'\ to the long-range nature of the phenomenon.
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AE information is retained inside augmentation spheres around each nucle-
us using a radial basis set, the so-called partial waves, |©.;) and [¢,,).
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We remove the long-range part of the potential due to dipole interac-
tions before the Fourier interpolation and add it back afterwards. It has a
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Finally, the wavefunction characters, ¢,,..; , are calculated by projecting the . Z; .. Born-effective-charge tensor  €x ... static dielectric tensor

PS orbitals onto PAW projector functions, [P, : ¢, = Bl

We have two methods of calculating the ZPR. They are equivalent in
the adiabatic limit if the rigid-ion approximation is not employed.
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- Fast ZPR convergence

- Easy to implement

- AE information is preserved implicitly

- Equations unaffected by PAW transform
- Usable everywhere, not just for ZPR
- Full AE treatment of the coupling
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- Slow ZPR convergence
- More dependent on pseudopotential
- More difficult to implement

- Formally only valid for adiabatic
electron-phonon renormalization
- Expected to fail for other observables

Conclusion

Results

Non-adiabatic band-gap ZPR (meV) of various semiconduc-
tors and insulators compared against Literature. The ob-
tained results are satisfactory.

ZPR

AE and PS methods yield the same non-adiabatic band-gap ZPR for MgO, AlAs and ZnS. The AE ap-
proach requires significantly more intermediate states to converge.

We have implemented a state-of-the-art algorithm in VASP for calcu-
lating the electron self-energy using finite differences and the PAW
method. This provides access to the phonon-induced renormalization
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