Reproducibility in density functional theory calculations of solids

Author(s)
Kurt Lejaeghere, Gustav Bihlmayer, Torbjoern Bjoerkman, Peter Blaha, Stefan Bluegel, Volker Blum, Damien Caliste, Ivano E. Castelli, Stewart J. Clark, Andrea Dal Corso, Stefano de Gironcoli, Thierry Deutsch, John Kay Dewhurst, Igor Di Marco, Claudia Draxl, Marcin Dulak, Olle Eriksson, Jose A. Flores-Livas, Kevin F. Garrity, Luigi Genovese, Paolo Giannozzi, Matteo Giantomassi, Stefan Goedecker, Xavier Gonze, Oscar Granaes, E. K. U. Gross, Andris Gulans, Francois Gygi, D. R. Hamann, Phil J. Hasnip, N. A. W. Holzwarth, Diana Iusan, Dominik B. Jochym, Francois Jollet, Daniel Jones, Georg Kresse, Klaus Koepernik, Emine Kuecuekbenli, Yaroslav O. Kvashnin, Inka L. M. Locht, Sven Lubeck, Martijn Marsman, Nicola Marzari, Ulrike Nitzsche, Lars Nordstrom, Taisuke Ozaki, Lorenzo Paulatto, Chris J. Pickard, Ward Poelmans, Matt I. J. Probert, Keith Refson, Manuel Richter, Gian-Marco Rignanese, Santanu Saha, Matthias Scheffler, Martin Schlipf, Karlheinz Schwarz, Sangeeta Sharma, Francesca Tavazza, Patrik Thunstroem, Alexandre Tkatchenko, Marc Torrent, David Vanderbilt, Michiel J. van Setten, Veronique Van Speybroeck, John M. Wills, Jonathan R. Yates, Guo-Xu Zhang, Stefaan Cottenier
Abstract

The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We report the results of a community-wide effort that compared 15 solid-state codes, using 40 different potentials or basis set types, to assess the quality of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals. We conclude that predictions from recent codes and pseudopotentials agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Older methods, however, have less precise agreement. Our benchmark provides a framework for users and developers to document the precision of new applications and methodological improvements.

Organisation(s)
Computational Materials Physics
External organisation(s)
Ghent University , Forschungszentrum Jülich, Åbo Akademi University, Aalto University, Duke University, Centre National De La Recherche Scientifique (CNRS), University of Grenoble Alpes, École polytechnique fédérale de Lausanne, Durham University, Scuola Internazionale Superiore di Studi Avanzati, Max Planck Institute of Microstructure Physics, Uppsala University, Humboldt-Universität zu Berlin, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Technical University of Denmark (DTU), National Institute of Standards and Technology, Gaithersburg, Katholieke Universiteit Leuven, Universität Basel, Harvard University, University of California, Davis, Rutgers University, Mat Sim Res, Wake Forest University, Rutherford Appleton Laboratory, CEA Cadarache, University of Oxford, Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, Technische Universität Dresden, Radboud University, University of Tokyo, Université Paris VI - Pierre-et-Marie-Curie, University of Cambridge, University of London, University of California, Santa Barbara, University of Luxembourg, Los Alamos National Laboratory, Harbin Institute of Technology, University of York, Technische Universität Wien, Università degli Studi di Udine
Journal
Science
Volume
351
Pages
1415
No. of pages
7
ISSN
0036-8075
DOI
https://doi.org/10.1126/science.aad3000
Publication date
03-2016
Peer reviewed
Yes
Austrian Fields of Science 2012
103009 Solid state physics, 103015 Condensed matter, 103025 Quantum mechanics, 103036 Theoretical physics
Keywords
Portal url
https://ucris.univie.ac.at/portal/en/publications/reproducibility-in-density-functional-theory-calculations-of-solids(22789d08-7e3c-4326-bf43-b7d7ac3d9565).html