Structure and properties of metal-exchanged zeolites studied using gradient-corrected and hybrid functionals. III. Energetics and vibrational spectroscopy of adsorbates

Author(s)
Florian Göltl, Juergen Hafner
Abstract

The influence of the exchange-correlation functional (semilocal gradient corrected or hybrid functional) on density-functional studies of the adsorption of CO and NO in Cu- and Co-exchanged chabazite has been investigated, extending the studies of the structural and electronic properties of these materials [ F. Goltl and J. Hafner, J. Chem. Phys. 136, 064501 (2012); 136, 064502 (2012)] and including for comparison carbonyls and nitrosyls of Cu and Co. Hybrid functionals predict much lower adsorption energies than conventional semilocal functionals, in better agreement with experiment as far as data are available for comparison. The calculated adsorption energies show a strong linear correlation with the stability of the cation sites. For Cu(I)-chabazite the calculated adsorption energies span almost the interval between the adsorption energies calculated for pure neutral and positively charged Cu-carbonyls and nitrosyls. For divalent Cu(II) and Co(II) the adsorption energies at cations in chabazite are much lower than the metal-molecule binding energies in the free carbonyls or nitrosyls, especially for the most stable cation location in a six-membered ring of the chabazite structure. For the stretching modes of adsorbed CO only hybrid functionals reproduce the blueshift of the frequency reported for all Cu(I)- and Co(II)-zeolites. For Cu(II)-chabazite both types of functionals predict a blueshift, the larger value calculated with hybrid functionals being in better agreement with observation. For NO adsorbed on Cu(I)-chabazite all functionals produce a redshift, the smaller value derived with hybrid functionals being in better agreement with experiment. For NO adsorbed in Cu(II)- and Co(II)-chabazite gradient-corrected functionals produce the best agreement with experiment for cations located in a six-membered ring. Semilocal functionals tend to underestimate the frequencies, while hybrid functionals tend to overestimate. The decisive factors determining the influence of the functionals are the larger HOMO-LUMO gap and the larger bandgap of the zeolite host, as well as the larger exchange-splitting of the cation eigenstates predicted with hybrid functionals. For Co(II)-chabazite the tendency to overestimate the exchange-splitting and to stabilize a high-spin state lead to better results with semilocal functionals. Finally, a comprehensive discussion of the influence of the exchange-correlation functional on the physico-chemical properties of these complex systems, based all three papers of this series is presented.

Organisation(s)
Computational Materials Physics
Journal
Journal of Chemical Physics
Volume
136
No. of pages
31
ISSN
0021-9606
DOI
https://doi.org/10.1063/1.3676410
Publication date
2012
Peer reviewed
Yes
Austrian Fields of Science 2012
103009 Solid state physics, 103015 Condensed matter, 103025 Quantum mechanics, 103036 Theoretical physics
Portal url
https://ucrisportal.univie.ac.at/en/publications/structure-and-properties-of-metalexchanged-zeolites-studied-using-gradientcorrected-and-hybrid-functionals-iii-energetics-and-vibrational-spectroscopy-of-adsorbates(0c797403-d697-45a8-b00b-185070212f63).html