How to verify the precision of density-functional-theory implementations via reproducible and universal workflows

Emanuele Bosoni, Louis Beal, Marnik Bercx, Peter Blaha, Stefan Blügel, Jens Bröder, Martin Callsen, Stefaan Cottenier, Augustin Degomme, Vladimir Dikan, Kristjan Eimre, Espen Flage-Larsen, Marco Fornari, Alberto Garcia, Luigi Genovese, Matteo Giantomassi, Sebastiaan P. Huber, Henning Janssen, Georg Kastlunger, Matthias Krack, Georg Kresse, Thomas D. Kühne, Kurt Lejaeghere, Georg K.H. Madsen, Martijn Marsman, Nicola Marzari, Gregor Michalicek, Hossein Mirhosseini, Tiziano M.A. Müller, Guido Petretto, Chris J. Pickard, Samuel Poncé, Gian Marco Rignanese, Oleg Rubel, Thomas Ruh, Michael Sluydts, Danny E.P. Vanpoucke, Sudarshan Vijay, Michael Wolloch, Daniel Wortmann, Aliaksandr V. Yakutovich, Jusong Yu, Austin Zadoks, Bonan Zhu, Giovanni Pizzi

Density-functional theory methods and codes adopting periodic boundary conditions are extensively used in condensed matter physics and materials science research. In 2016, their precision (how well properties computed with different codes agree among each other) was systematically assessed on elemental crystals: a first crucial step to evaluate the reliability of such computations. In this Expert Recommendation, we discuss recommendations for verification studies aiming at further testing precision and transferability of density-functional-theory computational approaches and codes. We illustrate such recommendations using a greatly expanded protocol covering the whole periodic table from Z = 1 to 96 and characterizing 10 prototypical cubic compounds for each element: four unaries and six oxides, spanning a wide range of coordination numbers and oxidation states. The primary outcome is a reference dataset of 960 equations of state cross-checked between two all-electron codes, then used to verify and improve nine pseudopotential-based approaches. Finally, we discuss the extent to which the current results for total energies can be reused for different goals.

Computational Materials Physics
External organisation(s)
Institute of Materials Science of Barcelona, University of Grenoble Alpes, École polytechnique fédérale de Lausanne, Technische Universität Wien, Ghent University , Sigma2 AS, SINTEF The Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology (NTH), Central Michigan University, Université catholique de Louvain, Technical University of Denmark (DTU), Paul Scherrer Institute, VASP Software GmbH, Helmholtz-Zentrum Dresden-Rossendorf, Universität Paderborn, OCAS NV/ArcelorMittal Global R&D Gent, HPE HPC EMEA Research Lab, University of Cambridge, Tohoku University, McMaster University, Montanuniversität Leoben, ePotentia, Hasselt University, Eidgenössische Materialprüfungs- und Forschungsanstalt, University College London, Forschungszentrum Jülich, Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), No. 1, Section 4, Roosevelt Road
Nature Reviews Physics
No. of pages
Publication date
Peer reviewed
Austrian Fields of Science 2012
103015 Condensed matter, 103043 Computational physics
ASJC Scopus subject areas
Physics and Astronomy(all)
Portal url